
NAG Fortran Library Chapter Introduction

X02 – Machine Constants

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

2.1 Floating-Point Arithmetic . 2

2.1.1 A model of floating-point arithmetic . 2
2.1.2 Derived parameters of floating-point arithmetic . 3

2.2 Other Aspects of the Computing Environment . 4

3 Recommendations on Choice and Use of Available Routines 4

3.1 Historical Note . 4

3.2 Parameters of Floating-point Arithmetic . 4

3.3 Parameters of Other Aspects of the Computing Environment 5

4 Example . 5

4.1 Program Text . 5

4.2 Program Data . 6

4.3 Program Results . 6

5 Routines Withdrawn or Scheduled for Withdrawal 6

6 References . 7

X02 – Machine Constants Introduction – X02

[NP3546/20A] X02.1

1 Scope of the Chapter

This chapter is concerned with parameters which characterise certain aspects of the computing
environment in which the NAG Fortran Library is implemented. They relate primarily to floating-point
arithmetic, but also to integer arithmetic, the elementary functions and exception handling. The values of
the parameters vary from one implementation of the Library to another, but within the context of a single
implementation they are constants.

The parameters are intended for use primarily by other routines in the Library, but users of the Library may
sometimes need to refer to them directly.

Each parameter-value is returned by a separate Fortran function. Because of the trivial nature of the
functions, individual routine documents are not provided; the necessary details are given in Section 3 of
this Introduction.

2 Background to the Problems

2.1 Floating-Point Arithmetic

2.1.1 A model of floating-point arithmetic

In order to characterise the important properties of floating-point arithmetic by means of a small number of
parameters, NAG uses a simplified model of floating-point arithmetic. The parameters of the model can be
chosen to provide a sufficiently close description of the behaviour of actual implementations of floating-
point arithmetic, but not, in general, an exact description; actual implementations vary too much in the
details of how numbers are represented or arithmetic operations are performed.

The model is based on that developed by Brown (1981), but differs in some respects. The essential
features are summarised here.

The model is characterised by four integer parameters and one logical parameter. The four integer
parameters are:

b: the base

p: the precision (i.e., the number of significant base-b digits)

emin: the minimum exponent

emax: the maximum exponent

These parameters define a set of numerical values of the form:

f�be

where the exponent e must lie in the range [emin; emax], and the fraction f (also called the mantissa or
significand) lies in the range ½1=b; 1), and may be written

f ¼ 0:f1f2 � � � fp
Thus f is a p-digit fraction to the base b; the fi are the base-b digits of the fraction: they are integers in the
range 0 to b� 1, and the leading digit f1 must not be zero.

The set of values so defined (together with zero) are called model numbers. For example, if b ¼ 10,

p ¼ 5, emin ¼ �99 and emax ¼ þ99, then a typical model number is 0:12345� 1067.

The model numbers must obey certain rules for the computed results of the following basic arithmetic
operations: addition, subtraction, multiplication, negation, absolute value, and comparisons. The rules
depend on the value of the logical parameter ROUNDS.

If ROUNDS is true, then the computed result must be the nearest model number to the exact result
(assuming that overflow or underflow does not occur); if the exact result is midway between two model
numbers, then it may be rounded either way.

If ROUNDS is false, then if the exact result is a model number, the computed result must be equal to the
exact result; otherwise, the computed result may be either of the adjacent model numbers on either side of
the exact result.

Introduction – X02 NAG Fortran Library Manual

X02.2 [NP3546/20A]

For division and square root, this latter rule is further relaxed (regardless of the value of ROUNDS): the
computed result may also be one of the next adjacent model numbers on either side of the permitted values
just stated.

On some machines, the full set of representable floating-point numbers conforms to the rules of the model
with appropriate values of b, p, emin, emax and ROUNDS. For example, for DEC VAX machines in single
precision:

b ¼ 2

p ¼ 24

emin ¼ �127

emax ¼ 127 and ROUNDS is true.

For machines supporting IEEE binary double precision arithmetic:

b ¼ 2

p ¼ 53

emin ¼ �1021

emax ¼ 1024 and ROUNDS is true.

For other machines, values of the model parameters must be chosen which define a large subset of the
representable numbers; typically it may be necessary to decrease p by 1 (in which case ROUNDS is
always set to false), or to increase emin or decrease emax by a little bit. There are additional rules to ensure
that arithmetic operations on those representable numbers that are not model numbers are consistent with
arithmetic on model numbers.

(Note: the model used here differs from that described in Brown (1981) in the following respects: square-
root is treated, like division, as a weakly supported operator; and the logical parameter ROUNDS has been
introduced to take account of machines with good rounding.)

2.1.2 Derived parameters of floating-point arithmetic

Most numerical algorithms require access, not to the basic parameters of the model, but to certain derived
values, of which the most important are:

the machine precision �: ¼ 1
2

� �
�b1�p if ROUNDS is true,

¼ b1�p otherwise (but see Note below).

the smallest positive model number: ¼ bemin�1

the largest positive model number: ¼ ð1� b�pÞ�bemax

Note: the value of � is increased very slightly in some implementations to ensure that the computed result
of 1þ � or 1� � differs from 1. For example in IEEE binary single precision arithmetic the value is set to

2�24 þ 2�47.

Two additional derived values are used in the NAG Fortran Library. Their definitions depend not only on
the properties of the basic arithmetic operations just considered, but also on properties of some of the
elementary functions. We define the safe range parameter to be the smallest positive model number z
such that for any x in the range ½z; 1=z� the following can be computed without undue loss of accuracy,
overflow, underflow or other error:

�x

1=x

�1=x

SQRTðxÞ
LOGðxÞ
EXPðLOGðxÞÞ
y**ðLOGðxÞ=LOGðyÞÞ for any y

X02 – Machine Constants Introduction – X02

[NP3546/20A] X02.3

In a similar fashion we define the safe range parameter for complex arithmetic as the smallest positive
model number z such that for any x in the range [z; 1=z] the following can be computed without any
undue loss of accuracy, overflow, underflow or other error:

�w

1=w

�1=w

SQRTðwÞ
LOGðwÞ
EXPðLOGðwÞÞ
y**ðLOGðwÞ=LOGðyÞÞ for any y

ABSðwÞ
where w is any of x, ix, xþ ix, 1=x, i=x, 1=xþ i=x, and i is the square root of �1.

This parameter was introduced to take account of the quality of complex arithmetic on the machine. On
machines with well implemented complex arithmetic, its value will differ from that of the real safe range
parameter by a small multiplying factor less than 10. For poorly implemented complex arithmetic this
factor may be larger by many orders of magnitude.

2.2 Other Aspects of the Computing Environment

No attempt has been made to characterise comprehensively any other aspects of the computing
environment. The other functions in this chapter provide specific information that is occasionally required
by routines in the Library.

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Historical Note

At Mark 12 a new set of routines was introduced to return parameters of floating-point arithmetic. The
new set of routines is more carefully defined, and they do not require a dummy parameter. They are listed
in Section 3.2. The older routines have since been withdrawn (see Section 5).

3.2 Parameters of Floating-point Arithmetic
real FUNCTION X02AJF() returns the machine precision, i.e., 1

2

� �
� b1�p if ROUNDS is

true or b1�p otherwise (or a value very slightly larger than this,
see Section 2.1.2)

real FUNCTION X02AKF() returns the smallest positive model number, i.e., bemin�1

real FUNCTION X02ALF() returns the largest positive model number, i.e., ð1� b�pÞ � bemax

real FUNCTION X02AMF() returns the safe range parameter as defined in Section 2.1.2
real FUNCTION X02ANF() returns the safe range parameter for complex arithmetic as

defined in Section 2.1.2
INTEGER FUNCTION X02BHF() returns the model parameter b
INTEGER FUNCTION X02BJF() returns the model parameter p
INTEGER FUNCTION X02BKF() returns the model parameter emin

INTEGER FUNCTION X02BLF() returns the model parameter emax

LOGICAL FUNCTION X02DJF() returns the model parameter ROUNDS

Introduction – X02 NAG Fortran Library Manual

X02.4 [NP3546/20A]

3.3 Parameters of Other Aspects of the Computing Environment
real FUNCTION X02AHF(X)
real X

returns the largest positive real argument for which the intrinsic
functions SIN and COS return a result with some meaningful
accuracy

INTEGER FUNCTION X02BBF(X)
real X

returns the largest positive integer value

INTEGER FUNCTION X02BEF(X)
real X

returns the maximum number of decimal digits which can be
accurately represented over the whole range of floating-point
numbers

LOGICAL FUNCTION X02DAF(X)
real X

returns false if the system sets underflowing quantities to zero,
without any error indication or undesirable warning or system
overhead

The parameter X in these routines is a dummy parameter.

4 Example

The example program listed below simply prints the values of all the functions in Chapter X02. Obviously
the results will vary from one implementation of the Library to another. The results listed in X02 –
Machine Constants are those from a double precision implementation on a Silicon Graphics workstation.

4.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* X02AJF Example Program Text
* Mark 17 Revised. NAG Copyright 1995.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. External Functions ..
real X02AHF, X02AJF, X02AKF, X02ALF, X02AMF, X02ANF
INTEGER X02BBF, X02BEF, X02BHF, X02BJF, X02BKF, X02BLF
LOGICAL X02DAF, X02DJF
EXTERNAL X02AHF, X02AJF, X02AKF, X02ALF, X02AMF, X02ANF,

+ X02BBF, X02BEF, X02BHF, X02BJF, X02BKF, X02BLF,
+ X02DAF, X02DJF

* .. Executable Statements ..
WRITE (NOUT,*) ’X02AJF Example Program Results’
WRITE (NOUT,*)
WRITE (NOUT,*) ’(results are machine-dependent)’
WRITE (NOUT,*)
WRITE (NOUT,*) ’The basic parameters of the model’
WRITE (NOUT,*)
WRITE (NOUT,99999) ’ X02BHF = ’, X02BHF(),

+ ’ (the model parameter B)’
WRITE (NOUT,99999) ’ X02BJF = ’, X02BJF(),

+ ’ (the model parameter P)’
WRITE (NOUT,99999) ’ X02BKF = ’, X02BKF(),

+ ’ (the model parameter EMIN)’
WRITE (NOUT,99999) ’ X02BLF = ’, X02BLF(),

+ ’ (the model parameter EMAX)’
WRITE (NOUT,99998) ’ X02DJF = ’, X02DJF(),

+ ’ (the model parameter ROUNDS)’
WRITE (NOUT,*)
WRITE (NOUT,*) ’Derived parameters of floating-point arithmetic’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ X02AJF = ’, X02AJF(), ’ (the machine precision)’
WRITE (NOUT,*) ’ X02AKF = ’, X02AKF(),

+ ’ (the smallest positive model number)’
WRITE (NOUT,*) ’ X02ALF = ’, X02ALF(),

+ ’ (the largest positive model number)’
WRITE (NOUT,*) ’ X02AMF = ’, X02AMF(),

+ ’ (the real safe range parameter)’
WRITE (NOUT,*) ’ X02ANF = ’, X02ANF(),

X02 – Machine Constants Introduction – X02

[NP3546/20A] X02.5

+ ’ (the complex safe range parameter)’
WRITE (NOUT,*)
WRITE (NOUT,*)

+ ’Parameters of other aspects of the computing environment’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ X02AHF = ’, X02AHF(0.0e0),

+ ’ (largest argument for SIN and COS)’
WRITE (NOUT,99997) ’ X02BBF = ’, X02BBF(0.0e0),

+ ’ (largest positive integer)’
WRITE (NOUT,99997) ’ X02BEF = ’, X02BEF(0.0e0),

+ ’ (precision in decimal digits)’
WRITE (NOUT,99996) ’ X02DAF = ’, X02DAF(0.0e0),

+ ’ (indicates how underflow is handled)’
STOP

*
99999 FORMAT (1X,A,I7,A)
99998 FORMAT (1X,A,L7,A)
99997 FORMAT (1X,A,I20,A)
99996 FORMAT (1X,A,L20,A)

END

4.2 Program Data

None.

4.3 Program Results

X02AJF Example Program Results

(results are machine-dependent)

The basic parameters of the model

X02BHF = 2 (the model parameter B)
X02BJF = 53 (the model parameter P)
X02BKF = -1021 (the model parameter EMIN)
X02BLF = 1024 (the model parameter EMAX)
X02DJF = T (the model parameter ROUNDS)

Derived parameters of floating-point arithmetic

X02AJF = 1.1113072267976499E-16 (the machine precision)
X02AKF = 2.2250738585072098E-308 (the smallest positive model number)
X02ALF = 1.7976931348623099E+308 (the largest positive model number)
X02AMF = 2.2250738585072098E-308 (the real safe range parameter)
X02ANF = 2.2250738585072098E-308 (the complex safe range parameter)

Parameters of other aspects of the computing environment

X02AHF = 1.8446744073709500E+19 (largest argument for SIN and COS)
X02BBF = 2147483647 (largest positive integer)
X02BEF = 15 (precision in decimal digits)
X02DAF = F (indicates how underflow is handled)

5 Routines Withdrawn or Scheduled for Withdrawal

The following routines have been withdrawn. Advice on replacing calls to those withdrawn since Mark 13
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

X02AAF 16 X02AJF
X02ABF 16 X02AKF
X02ACF 16 X02ALF
X02ADF 14 X02AJF and X02AKF
X02AEF 14 X02AMF

Introduction – X02 NAG Fortran Library Manual

X02.6 [NP3546/20A]

X02AFF 14 X02AMF
X02AGF 16 X02AMF
X02BAF 14 X02BHF
X02BCF 14 X02AMF
X02BDF 14 X02AMF
X02CAF 17 not needed except with F01BTF and F01BXF

6 References

Brown W S (1981) A simple but realistic model of floating-point computation ACM Trans. Math. Software
7 445–480

X02 – Machine Constants Introduction – X02

[NP3546/20A] X02.7 (last)

	X02
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Floating-Point Arithmetic
	2.1.1 A model of floating-point arithmetic
	2.1.2 Derived parameters of floating-point arithmetic

	2.2 Other Aspects of the Computing Environment

	3 Recommendations on Choice and Use of Available Routines
	3.1 Historical Note
	3.2 Parameters of Floating-point Arithmetic
	3.3 Parameters of Other Aspects of the Computing Environment

	4 Example
	4.1 Program Text
	4.2 Program Data
	4.3 Program Results

	5 Routines Withdrawn or Scheduled for Withdrawal
	6 References

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

